The Straight Line	Notes
Distance formula	
Mid-point formula	
Gradient formula	
Gradient: $\mathrm{m}=\tan \theta$	
Parallel lines: equal gradients	
Perpendicular lines: product of gradients $=-1$	
Gradients of lines parallel to x and y axes	
Equations of lines parallel to x and y axes	
Equation of a straight line: $\mathrm{y}=\mathrm{mx}+\mathrm{c}$	
Equation of a straight line through a point (a, b) with gradient m	
Find points of intersection	
Know Median of a triangle	
Know Altitude of a triangle	
Know Perpendicular bisector of a line	
Composite and Inverse Functions	
Know meaning of domain	
Know meaning of range	
Finding expressions for related functions: $\mathrm{f}(\mathrm{x}+1)$ or $\mathrm{f}(3 \mathrm{x})$	
Evaluating functions: e.g. f(2)	
Composite functions: $\mathrm{f}(\mathrm{g}(\mathrm{x})$); $\mathrm{g}(\mathrm{f}(\mathrm{x})$)	
Finding inverse of functions	
Algebraic Functions and Graphs	
Completing the square	
Simple case: $\quad x^{2}+2 x-5$	
Common factor type: $\quad 3 x^{2}+6 \mathrm{x}-7$	
Negative common factor: $3-8 \mathrm{x}-2 \mathrm{x}^{2}$	
Maximum and minimum values from completing the square	
Sketching graphs of related functions: $\mathrm{y}=-\mathrm{f}(\mathrm{x}), \mathrm{y}=\mathrm{f}(-\mathrm{x})$	
Sketching graphs of related functions: $\mathrm{y}=\mathrm{f}(\mathrm{x} \pm \mathrm{k}), \mathrm{y}=\mathrm{f}(\mathrm{x}) \pm \mathrm{k}$	
Know special logs: $\log _{\mathrm{a}} 1=0$ and $\log _{\mathrm{a}} \mathrm{a}=1$	
Trigonometric Functions and Graphs	
Changing between radians and degrees π radians $=180^{\circ}$	
Common values of radians \sim degrees e.g. $\pi / 6=30^{\circ}$	
Exact value table for sin, cos, tan of $30^{\circ}, 45^{\circ}, 60^{\circ}$ (surds)	
Max and min values of trig functions	look where sin and cos are 1 or -1

Using All Sinners Take Care	
Recognising Trig graphs: $\mathrm{y}=\mathrm{a} \sin \mathrm{bx}, \mathrm{y}=\mathrm{a}$ cos bx (\pm constant)	
Sketching Trig graphs: $\mathrm{y}=\mathrm{a} \sin \mathrm{bx}, \mathrm{y}=\mathrm{a} \cos \mathrm{bx}$ (\pm constant)	
Solving Trig Equations: - always aim to get $\sin x=$ constant	
Type 1: $\quad 2 \sin \mathrm{x}=1$	
Type 2: $\sqrt{ } 2 \sin \mathrm{x}+1=0$	
Type 3: $\quad \sin 3 x=-1$	
Type 4: $2 \sin ^{2} x=1$	
Type 5: $\quad 4 \sin ^{2} \mathrm{x}+11 \sin \mathrm{x}+6=0$	
Type 6: $\quad \sin ^{2} x-\cos ^{2} x=1$	
Type 7: $\quad \sin \left(2 x-20^{\circ}\right)=0.5$	
Introduction to Differentiation	
Rules for differentiation:	
Constant a	
Power of x - x^{3}	
Constant times power of $\mathrm{x} \quad \mathrm{ax}^{4}$	
sum or difference $3 x^{2}-5 \mathrm{x}^{3}$	
Negative indices x^{-3}	
Fractional indices $\mathrm{x}^{-4 / 5}$	
Fractions $\frac{3}{x^{2}}$	Straight line form
Roots and Powers $\sqrt[3]{x^{2}}$	Straight line form
Fraction expression $\quad \frac{3 x^{4}+5}{x}$	Straight line form
Rules of indices	
Meaning of negative indices	
Meaning of fractional indices	
Finding gradient of tangent to: $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{P}(\mathrm{a}, \mathrm{b})$	
Finding equation of tangent to: $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{P}(\mathrm{a}, \mathrm{b})$	
Finding point on a curve where tangent has a given gradient	
Using Differentiation	
Using table of signs - to determine nature of stationary point	
Using velocity and acceleration as derivatives	
Sequences	
Using a recurrence relation to generate terms: $\mathrm{u}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots$	
Forming a recurrence relation	
The linear recurrence relation: $\mathrm{u}_{\mathrm{n}+1}=\mathrm{m} \mathrm{u}_{\mathrm{n}}+\mathrm{c}$	
Special sequences: when $\mathrm{m}=1$ arithmetic sequence	
when $\mathrm{c}=0$ geometric sequence	
Limit of a recurrence relation: If m is fractional: $\mathbf{L}=\mathbf{c} /(\mathbf{1}-\mathbf{m}$)	

Polynomials	
Nested or synthetic division: dividing by ($\mathrm{x}-\mathrm{h}$)	
Dividing by ($\mathrm{x}+\mathrm{h}$) or ($2 \mathrm{x}+\mathrm{h}$)	
Write down the quotient and remainder	
Remainder Theorem: Remainder is $\mathrm{f}(\mathrm{h})$ when dividing by x - h	
Factor Theorem: If $\mathrm{f}(\mathrm{h})=0$ then ($\mathrm{x}-\mathrm{h}$) is a factor	
Finding factors of polynomials	- look at factors of constant
Quadratic Theory	
Solving quadratic equations: 4 methods	
Graphically	
Factorisation	
Trinomial eg $\mathrm{x}^{2}+5 \mathrm{x}+6=0 \quad(\mathrm{x}+3)(\mathrm{x}+2)$	
Common Factor eg $\mathrm{x}^{2}+5 \mathrm{x}=0 \quad \mathrm{x}(\mathrm{x}+5)=0$	
The Quadratic formula	
Completing the Square	
Using the discriminant to determine nature of roots: $\mathrm{b}^{2}-4 \mathrm{ac}$	
$=0$ (equal, real) >0 (real, distinct) <0 (no real roots)	
Integration	
Rules of integration - reverse of differentiation	Straight line form
Increase the index, Divide by the new index	
Do not forget the constant of integration	
Finding equation of a curve from gradient function and a point	Integrate and substitute to find c
Integration of fractional and negative indices	Straight line form
The area under a curve - defining as a definite integral	
Write down definite integrals (representing area under a curve)	
Evaluating definite integrals	
Calculating area under a curve	
Meaning of negative area below x-axis	
Composite areas	
Area between two curves	
Calculations in 2 and 3 dimensions	
SOH-CAH-TOA	
Sine Rule	
Cosine Rule	
Area of triangle - 2 formula $\sim 1 / 2$ base \mathbf{x} height : $1 / 2 \mathbf{a b} \sin \mathbf{C}$	
Related angles: $\sin (180-\mathrm{A})=\sin \mathrm{A} \quad \sin (-\mathrm{A})=-\sin \mathrm{A}$	
Related angles: $\cos (180-\mathrm{A})=-\cos \mathrm{A} \quad \cos (-\mathrm{A})=\cos \mathrm{A}$	
Related angles: $\cos (90-\mathrm{A})=\sin \mathrm{A} \quad \sin (90-\mathrm{A})=\cos \mathrm{A}$	
Trigonometric Proofs	
3D - angle between a line and a plane	

