The Straight Line	Notes
Distance formula	
Mid-point formula	
Gradient formula	
Gradient: $m = tan \theta$	
Parallel lines: equal gradients	
Perpendicular lines: product of gradients $= -1$	
Gradients of lines parallel to x and y axes	
Equations of lines parallel to x and y axes	
Equation of a straight line: $y = mx + c$	
Equation of a straight line through a point (a, b) with gradient m	
Find points of intersection	
Know Median of a triangle	
Know Altitude of a triangle	
Know Perpendicular bisector of a line	
Composite and Inverse Functions	
Know meaning of domain	
Know meaning of range	
Finding expressions for related functions: $f(x+1)$ or $f(3x)$	
Evaluating functions: e.g. f(2)	
Composite functions: $f(g(x))$; $g(f(x))$	
Finding inverse of functions	
Algebraic Functions and Graphs	
Completing the square	
Simple case: $x^2 + 2x - 5$	
Common factor type: $3x^2 + 6x - 7$	
Negative common factor: $3 - 8x - 2x^2$	
Maximum and minimum values from completing the square	
Sketching graphs of related functions: $y = -f(x)$, $y = f(-x)$	
Sketching graphs of related functions: $y = f(x \pm k), y = f(x) \pm k$	
Know special logs: $\log_a 1 = 0$ and $\log_a a = 1$	
Trigonometric Functions and Graphs	
Changing between radians and degrees π radians = 180°	
Common values of radians ~ degrees e.g. $\pi/6 = 30^{\circ}$	
Exact value table for sin, cos, tan of 30°, 45°, 60° (surds)	
Max and min values of trig functions	look where sin and \cos are 1 or -1

Using All Sinners Take Care	
Recognising Trig graphs: $y = a \sin bx$, $y = a \cos bx$ (± constant)	
Sketching Trig graphs: $y = a \sin bx$, $y = a \cos bx (\pm constant)$	
Solving Trig Equations: - always aim to get sin x = constant	
Type 1: $2 \sin x = 1$	
Type 2: $\sqrt{2} \sin x + 1 = 0$	
Type 3: $\sin 3x = -1$	
Type 4: $2\sin^2 x = 1$	
Type 5: $4\sin^2 x + 11\sin x + 6 = 0$	
Type 6: $\sin^2 x - \cos^2 x = 1$	
Type 7: $\sin(2x - 20^\circ) = 0.5$	
Introduction to Differentiation	
Rules for differentiation:	
Constant a	
$\begin{array}{c} \hline \\ \hline $	
Tower of x x Constant times power of x ax^4	
sum or difference $3x^2 - 5x^3$	
Sum of unreferee $5x^{-5x}$ Negative indices x^{-3}	
Fractional indices x ^{-4/5}	
Fractions $\frac{3}{x^2}$	Straight line form
Roots and Powers $\sqrt[3]{x^2}$	Straight line form
Fraction expression $\frac{3x^4 + 5}{x}$	Straight line form
Rules of indices	
Meaning of negative indices	
Meaning of fractional indices	
Finding gradient of tangent to: $y = f(x)$ at $P(a, b)$	
Finding equation of tangent to: $y = f(x)$ at $P(a, b)$	
Finding point on a curve where tangent has a given gradient	
Using Differentiation	
Using table of signs – to determine nature of stationary point	
Using velocity and acceleration as derivatives	
Sequences	
Using a recurrence relation to generate terms: u_0, u_1, u_2, \ldots	
Forming a recurrence relation	
The linear recurrence relation: $u_{n+1} = m u_n + c$	
Special sequences: when $m = 1$ arithmetic sequence	
when $c = 0$ geometric sequence	
Limit of a recurrence relation: If m is fractional: $\mathbf{L} = \mathbf{c}/(1 - \mathbf{m})$	

Polynomials	
Nested or synthetic division: dividing by $(x - h)$	
Dividing by $(x + h)$ or $(2x + h)$	
Write down the quotient and remainder	
Remainder Theorem: Remainder is f(h) when dividing by x - h	
Factor Theorem: If $f(h) = 0$ then $(x - h)$ is a factor	
Finding factors of polynomials	– look at factors of constant
Quadratic Theory	
Solving quadratic equations: 4 methods	
Graphically	
Factorisation	
Trinomial eg $x^2 + 5x + 6 = 0$ $(x + 3)(x + 2)$	
Common Factor eg $x^{2} + 5x = 0$ $x(x + 5) = 0$	
The Quadratic formula	
Completing the Square	
Using the discriminant to determine nature of roots: $b^2 - 4ac$	
= 0 (equal, real) >0 (real, distinct) <0 (no real roots)	
Integration	
Rules of integration – reverse of differentiation	Straight line form
Increase the index, Divide by the new index	
Do not forget the constant of integration	
Finding equation of a curve from gradient function and a point	Integrate and substitute to find
Integration of fractional and negative indices	Straight line form
The area under a curve – defining as a definite integral	
Write down definite integrals (representing area under a curve)	
Evaluating definite integrals	
Calculating area under a curve	
Meaning of negative area below x-axis	
Composite areas	
Area between two curves	
Colordations in 2 and 2 dimensions	
Calculations in 2 and 3 dimensions	
SOH-CAH-TOA	
Sine Rule	
Cosine Rule	
Area of triangle - 2 formula ~ $\frac{1}{2}$ base x height : $\frac{1}{2}$ a b sin C	
Related angles: $\sin(180 - A) = \sin A$ $\sin(-A) = -\sin A$	
Related angles: $\cos(180 - A) = -\cos A$ $\cos(-A) = \cos A$	
Related angles: $\cos (90 - A) = \sin A$ $\sin (90 - A) = \cos A$ Trigonometric Proofs	

3D – angle between two planes	
3D – Face diagonal	
3D – Space diagonal	
Compound Angle Formula	
Reminder of: $\sin A / \cos A = \tan A$	
Reminder of: $\sin^2 A + \cos^2 A = 1$	
$\cos (A + B) = \cos A \cos B - \sin A \sin B$	
$\cos (A - B) = \cos A \cos B + \sin A \sin B$	
$\sin (A + B) = \sin A \cos B + \cos B \sin A$	
$\sin (A - B) = \sin A \cos B - \cos B \sin A$	
$\sin 2A = 2 \sin A \cos A$	
$\cos 2A = \cos^2 A - \sin^2 A$	
$\cos 2A = 2\cos^2 A - 1$ $\cos 2A = 1 - 2\sin^2 A$	
$\cos^2 A = \frac{1}{2} (1 + \cos 2A) \sin^2 A = \frac{1}{2} (1 - \cos 2A)$	
Finding exact values for sin 15°, cos 75° etc.	
Proving identities e.g. prove: $\sin 3A = 3 \sin A - 4 \sin^3 A$	
Solving trig. equations:	
Type 1: $\cos 2x + \cos x + 1 = 0$	solve a quadratic using common factor
Type 2: $\cos 2x + \cos x + k = 0$ where $k \neq 1$	solve a quadratic with two brackets
The Circle	
Use form of equation of circle – centre O, radius r	$\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{r}^2$
Given equation – write down radius	
Given radius – write down equation	
Check if a point lies on, inside or outside the circle	Compare distance from origin with radius
Condition for (p, 2) to lie on circle	(p, 2) must satisfy equation of circle
Equation of circle – centre C(a, b) and radius r	$(x-a)^{2} + (y-b)^{2} = r^{2}$
Given equation – write down radius and co-ordinates of centre	
Given radius and co-ordinates of centre – write down equation	
Two circles touch – Distance between centres = sum of radii	
Finding common point where two circles touch	Use proportion on line joining centres
Angle in a semi circle	is a right angle = 90°
Properties of perpendicular bisector of a chord	
Isosceles triangles in a circle	
Tangent to a circle is at right angles to radius (or diameter)	
General equation of a circle (expand $(x - a)^2 + (y - b)^2 = r^2$)	$x^{2} + y^{2} + 2gx + 2fy + c = 0$
Knowing that centre is at (–g, –f)	
Knowing radius is: $\sqrt{(g^2 + f^2 - c)}$	
Finding equation of tangent to a circle	right angles to radius
Intersection of lines and circles	simultaneous equations - substitution
	1 point of intersection - discriminant

Vectors	
Write a directed line segment as a column vector	
Calculate magnitude of a vector u	
Adding and subtracting vectors	Add or subtract components
Multiply by a scalar	Multiply each component by the scal
Writing a directed line segment in terms of position vectors	$\overrightarrow{AB} = \underline{b} - \underline{a}$
Showing 3 points are collinear	Use scalar multiples and common po
Position vector $\underline{\mathbf{m}}$ of mid-point of AB	$\underline{\mathbf{m}} = \frac{1}{2} (\underline{\mathbf{a}} + \underline{\mathbf{b}})$
Find ratio that Q divides PR from co-ordinates of P, Q, R	Find scalar multiple of \overrightarrow{PQ} : \overrightarrow{QR}
Find co-ordinates of Q that divides PR in ratio 2 : 3 (say)	$\frac{\overrightarrow{PQ}}{\overrightarrow{QR}} = \frac{2}{3} \overrightarrow{3PQ} = 2\overrightarrow{QR} \cancel{3(\underline{q}-\underline{p})} = 2\overrightarrow{QR}$
Change between column vector and unit vector form	$\begin{pmatrix} 3\\-1\\2 \end{pmatrix} = 3\underline{i} - \underline{j} + 2\underline{k}$
Calculate scalar product $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \underline{\mathbf{a}} \underline{\mathbf{b}} \cos \theta$	θ is angle pointing out of two vectors
Calculate scalar product $\underline{\mathbf{a}}.\underline{\mathbf{b}} = \mathbf{x}_1\mathbf{x}_2 + \mathbf{y}_1\mathbf{y}_2 + \mathbf{z}_1\mathbf{z}_2$	
Calculate angle between two vectors	$\cos\theta = \frac{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}}{ \underline{\mathbf{a}} \underline{\mathbf{b}} } = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{ \underline{\mathbf{a}} \underline{\mathbf{b}} }$
Show 2 vectors are perpendicular (at right angles)	Show $\cos \theta = 0$ i.e. $\theta = \pi/2$
Show 2 vectors are parallel	Show $\cos \theta = 1$ i.e. $\theta = 0$
Using: $\underline{\mathbf{a}} \cdot \underline{\mathbf{a}} = a^2$ where a is $ \underline{\mathbf{a}} $	
Using: $\mathbf{\underline{i}} \cdot \mathbf{\underline{i}} = \mathbf{\underline{j}} \cdot \mathbf{\underline{j}} = \mathbf{\underline{k}} \cdot \mathbf{\underline{k}} = 1$	
Using: $\underline{\mathbf{i}} \cdot \underline{\mathbf{j}} = \underline{\mathbf{i}} \cdot \underline{\mathbf{k}} = \underline{\mathbf{j}} \cdot \underline{\mathbf{k}} = 0$	
Use Distributive Law: $\underline{\mathbf{a}}.(\underline{\mathbf{b}} + \underline{\mathbf{c}}) = \underline{\mathbf{a}}.\underline{\mathbf{b}} + \underline{\mathbf{a}}.\underline{\mathbf{c}}$	
Further Differentiation and Integration	
Differentiate sin x	d/dx (sin x) = cos x
Differentiate cos x	$d/dx (\cos x) = -\sin x$
Differentiate functions involving multiples of sin x and cos x	$d/dx (3\sin x - 2\cos x) = 3\cos x + 2\sin x$
Put functions involving sin x, $\cos x$ and x^n in straight line form	$\frac{3 + x^2 \cos x}{x^2} \implies 3x^{-2} + \cos x$
Using the Chain Rule: If $y = f(g(x))$ then $y = f(u)$ $u = g(x)$	dy/dx = dy/du x du/dx
Using the chain rule for Trigonometric functions	$d/dx(\sin 2x) = 2\cos 2x$
Integration of standard integral	$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)a} + c$
Integral of Trigonometric functions	
$\int \cos x dx = \sin x + c$	
$\int \sin x dx = -\cos x + c$	
$\int \sin x dx = -\cos x + c$ $\int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + c$	

$\int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + c$	
Definite trigonometric integrals	
$\int_0^\pi \sin x dx = \left[-\cos x \right]_0^\pi$	
$= -\cos \pi - (-\cos 0) = -(-1) - (-1) = 2$	
The Exponential and Logarithmic Functions	
Growth Calculations – e.g. £100 in bank at 12% for n years	Amount = $A(n) = 100 \times 1.12^{n}$
Decay calculations – e.g. full tank of 50 litres of petrol evaporates at 20% per week	Amount left $A(n) = 50 \ge 0.8^n$
Linking exponential to the log function	$y = a^{x} \iff \log_{a} y = x$ $\log_{2} 8 = 3 \iff 8 = 2^{3}$ $81 = 3^{4} \iff \log_{3} 81 = 4$
Write a log in exponential form	$\log_2 8 = 3 \Leftrightarrow 8 = 2^3$
Write an exponential in log form	$81 = 3^4 \Leftrightarrow \log_3 81 = 4$
Rules of logarithms	
$\log_a xy = \log_a x + \log_a y$	
$\log_a x / y = \log_a x - \log_a y$	
$\log_a x^p = p \log_a x$	
Solving log equations using the above rules	
Solving exponential equations	Take logs of both sides to exponent base
The Wave Function	
Express: $a \sin x + b \cos x$ in the form $R \cos(x \pm a)$	
Express: $a \sin x + b \cos x$ in the form $R \sin(x \pm a)$	
Finding maxima and minima of: $a \cos x + b \sin x$	
Solving trig equations of the form:	
$\sin x + 3\cos x + 1 = 0$	Use the wave function
$\sin 2x + 5\cos 2x + 1 = 0$	Use the wave function